Affiliation:
1. School of Automation, Beijing Institute of Technology, Beijing, China
2. Nanjing University of Science and Technology, Nanjing, China
Abstract
This paper presents a search-based global motion planning method, called the two-phase A*, with an adaptive heuristic weight. This method is suitable for planning a global path in real time for a car-like vehicle in both indoor and outdoor environments. In each planning cycle, the method first estimates a proper heuristic weight based on the hardness of the planning query. Then, it finds a nearly optimal path subject to the non-holonomic constraints using an improved A* with a weighted heuristic function. By estimating the heuristic weight dynamically, the two-phase A* is able to adjust the optimality level of its path based on the hardness of the planning query. Therefore, the two-phase A* sacrifices little planning optimality, and its computation time is acceptable in most situations. The two-phase A* has been implemented and tested in the simulations and real-world experiments over various task environments. The results show that the two-phase A* can generate a nearly optimal global path dynamically, which satisfies the non-holonomic constraints of a car-like vehicle and reduces the total navigation time.
Funder
Program for Changjiang Scholars and Innovative Research Team in University
National Natural Science Foundation of China
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献