Prediction of the pressure–flow characteristic of a Belleville washer-based damper valve

Author:

Darling J1,Patel A2,Tilley D1

Affiliation:

1. Department of Mechanical Engineering, University of Bath, Bath, UK

2. Siemens PLM, Cambridge, UK

Abstract

Flow control valves used in automotive suspension dampers are almost universally based upon the restriction of flow using Belleville washers. These washers can best be described as a non-flat washer of conical shape and uniform thickness. They are also known as disc springs and are commonly used for load bearing in which their compactness and ability to produce a wide range of load–deflection characteristics provide an alternative to conventional coil springs. Due to the non-linear behaviour of Belleville washers, and the complex flow paths in an automotive damper valve, it is difficult to predict the resulting pressure–flow characteristic. As a result, damper valve design is often considered to be a ‘black art’ best carried out by an experienced engineer using an experimental-based trial-and-error approach. Clearly, without the aid of an analytical tool to predict the behaviour of prototype systems it is difficult for the designer to fully exploit the functionality of a particular design. The current paper describes theoretical and experimental studies undertaken to investigate the pressure–flow characteristic of a Belleville washer-based damper valve. Existing load–deflection theory was extended to account for the hydraulic pressure acting on the surfaces of the washer. However, poor agreement was obtained between the measured pressure–flow data using a uniform pressure distribution across the washer diameter. For this reason the model was developed further to include the effect of a non-uniform pressure distribution within the valve. Computational fluid dynamics software was used to predict the pressure regime within the valve and this, in turn, was used to calculate the forces acting on the surface of the Belleville washer. The improved model was found to match the experimental behaviour with good accuracy, both for a range of spring pre-load conditions and for applications where several washers are stacked up in parallel. However further work would be required to develop a reliable simulation tool as an element of trial and error was necessary to estimate some simulation parameters.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference11 articles.

1. Patel A. A study of gas suspension systems for off-road vehicles. PhD Thesis, Department of Mechanical Engineering, University of Bath, 2009.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3