An improved efficient model for structure-aware lane detection of unmanned vehicles

Author:

Lv Zezheng1,Huang Xiaoci1,Liang Yaozhong1,Cao Wenguan1ORCID,Chong Yuxiang1

Affiliation:

1. Shanghai University of Engineering Science, Shanghai, China

Abstract

Lane detection algorithms require extremely low computational costs as an important part of autonomous driving. Due to heavy backbone networks, algorithms based on pixel-wise segmentation is struggling to handle the problem of runtime consumption in the recognition of lanes. In this paper, a novel and practical methodology based on lightweight Segmentation Network is proposed, which aims to achieve accurate and efficient lane detection. Different with traditional convolutional layers, the proposed Shadow module can reduce the computational cost of the backbone network by performing linear transformations on intrinsic feature maps. Thus a lightweight backbone network Shadow-VGG-16 is built. After that, a tailored pyramid parsing module is introduced to collect different sub-domain features, which is composed of both a strip pool module based on Pyramid Scene Parsing Network (PSPNet) and a convolution attention module. Finally, a lane structural loss is proposed to explicitly model the lane structure and reduce the influence of noise, so that the pixels can fit the lane better. Extensive experimental results demonstrate that the performance of our method is significantly better than the state-of-the-art (SOTA) algorithms such as Pointlanenet and Line-CNN et al. 95.28% and 90.06% accuracy and 62.5 frames per second (fps) inference speed can be achieved on the CULane and Tusimple test dataset. Compared with the latest ERFNet, Line-CNN, SAD, F1 scores have respectively increased by 3.51%, 2.84%, and 3.82%. Meanwhile, the result from our dataset exceeds the top performances of the other by 8.6% with an 87.09 F1 score, which demonstrates the superiority of our method.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-Time Localization and Mapping Algorithm of Unmanned Vehicle Based on Sensor Data Fusion and SLAM Technology;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

2. Proximal Policy Optimization-based Reinforcement Learning for End-to-end Autonomous Driving;2023 38th Youth Academic Annual Conference of Chinese Association of Automation (YAC);2023-08-27

3. Fast object detector with center localization confidence based on FCOS for environment perception in urban traffic scene;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-02-04

4. Largest Connected-ERFNet for Autonomous Railway Track Detection and Real-time Tracking;IFAC-PapersOnLine;2023

5. A novel multi-exposure fusion approach for enhancing visual semantic segmentation of autonomous driving;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3