Affiliation:
1. School of Mechanical Electrical Engineering, Wenzhou University, Wenzhou, China
2. Zhejiang Sensen Auto Parts Ltd, Wenzhou, China
Abstract
The investigation of magnetorheological (MR) semi-active suspension is crucial for automotive applications. This paper introduces a novel approach by considering time delay effect when load changes and considering vehicle’s spring-loaded mass as an uncertain parameter. To address these challenges, a new magnetorheological semi-active quarter-vehicle suspension controller is proposed. Controller combines inverse model with Taylor series backstepping control strategy to determine the necessary damping force provided by magnetorheological damper based on system’s dynamic error. Additionally, damping force is compensated using Taylor series expansion method. Drive current of magnetorheological damper is obtained by solving hyperbolic positive model parameters and inverse model through nonlinear least squares genetic algorithm. Simulation experiments are conducted to compare the performance of Taylor series backstepping control (TBS) suspension, backstepping control suspension affected by time delay, MSH control suspension affected by time delay and passive suspension. Various metrics such as spring-loaded mass displacement, velocity, acceleration, suspension dynamic displacement, and wheel dynamic load under random road excitation are evaluated. Simulation results demonstrate that proposed system effectively mitigates vehicle vibration caused by time delay and load variations, while enhancing vehicle’s handling and smoothness.
Funder
Wenzhou Major Science and Technology Innovation Project of China