A unified stiffness model of rolling lobe air spring with nonlinear structural parameters and air pressure dependence of rubber bellows

Author:

Chen Jun-Jie1ORCID,Huang Zi-Qi1,Liu Hong-Jiang23,Qiu Guang-Qi1ORCID,Gu Ying-Kui1ORCID

Affiliation:

1. School of Mechanical and Electrical Engineering (School of Automotive Engineering), Jiangxi University of Science and Technology, Ganzhou, China

2. Hebei Key Laboratory of Special Delivery Equipment, Yanshan University, Qinhuangdao, Hebei, China

3. KH Automotive Technologies Co., Ltd., Huzhou, Zhejiang, China

Abstract

The structural parameters of the rolling lobe air spring and the mechanical characteristic of rubber bellows are the key factors affecting the stiffness and mechanical characteristic of the rolling lobe air spring. Aiming at the prediction difficulties of structural parameters of the rolling lobe air spring with the composite curved contour piston and the modeling complexity of the hysteretic mechanical characteristic of rubber bellows under variable pressure conditions, the geometrical method is applied to derive the structural parameters models of the rolling lobe air spring with the composite curved contour piston. A new pressure factor is introduced and the Coulomb frictional pressure perturbation model and the fractional derivative Kelvin-Voigt pressure perturbation model are reconstructed to accurately describe the hysteretic mechanical characteristic of rubber bellows under variable pressure conditions. A unified pressure equation is constructed to characterize the evolution of model parameters under variable pressure conditions. Furthermore, a hysteretic mechanical characteristic pressure perturbation model (abbreviated as HMCPP model) of rubber bellows under variable pressure conditions is put forward. Finally, a unified stiffness model of the rolling lobe air spring including prediction models of nonlinear structural parameters and a HMCPP model of rubber bellows is built. Taking a certain type of rolling lobe air spring as the test sample A, the structural parameters tests and static/dynamic characteristic tests of sample A are carried out based on the MTS852.05 test bench, which verified the accuracy of the unified stiffness model of the rolling lobe air spring. The research results provide theoretical support for the mechanical characteristic matching and air pressure precise control of the rolling lobe air spring under variable pressure conditions.

Funder

National Natural Science Foundation of China

Jiangxi Provincial Natural Science Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3