A variational approach for estimation of monocular depth and camera motion in autonomous driving

Author:

Hu Huijuan1ORCID,Hu Chuan2ORCID,Zhang Xuetao3

Affiliation:

1. CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China

2. Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA

3. The Department of Automation Science and Technology, Xi’an Jiaotong University, Xi’an, P.R. China

Abstract

In this paper, a new direct computational approach to dense 3D reconstruction in autonomous driving is proposed to simultaneously estimate the depth and the camera motion for the motion stereo problem. A traditional Structure from Motion framework is utilized to establish geometric constrains for our variational model. The architecture is mainly composed of the texture constancy constraint, one-order motion smoothness constraint, a second-order depth regularize constraint and a soft constraint. The texture constancy constraint can improve the robustness against illumination changes. One-order motion smoothness constraint can reduce the noise in estimation of dense correspondence. The depth regularize constraint is used to handle inherent ambiguities and guarantee a smooth or piecewise smooth surface, and the soft constraint can provide a dense correspondence as initial estimation of the camera matrix to improve the robustness future. Compared to the traditional dense Structure from Motion approaches and popular stereo approaches, our monocular depth estimation results are more accurate and more robust. Even in contrast to the popular depth from single image networks, our variational approach still has good performance in estimation of monocular depth and camera motion.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3