Elastokinematics and compliance of a rectilinear rear independent suspension

Author:

Liu Xiang1,Zhao Jing-Shan1,Zhang Jie2,Feng Zhi-Jing1

Affiliation:

1. State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, People’s Republic of China

2. Department of Research and Development, Wangxiang Group Technical Center, Ningwei Town, Xiaoshan, Zhejiang, People’s Republic of China

Abstract

A rectilinear rear independent suspension has a distinct difference from the traditional ones in that its wheel alignment parameters remain invariable in theoretical kinematics. However, they change within a narrow interval during jounce and rebound when the elasticity of parts, especially the rubber bushings, is taken into account. With the aim of investigating the compliance of the rectilinear rear independent suspension, an elastokinematic model is established in accordance with static equilibrium equations and compatibility conditions. The elastokinematic model has 28 unknowns corresponding to the 5 static equilibrium equations and 23 compatibility equations. Different configurations of rubber bushing and the sensitivity of the suspension stiffness to that of the rubber bushing are analysed. The analytical results indicate that the rubber bushings are best mounted close to the knuckle, and the suspension stiffness is sensitive to the compressive stiffness and the torsional stiffness about the z-axis of the rubber bushing. In addition, the results from kinematic and compliance tests not only verified the elastokinematic model but also revealed the excellent wheel alignment capacity of the rectilinear rear independent suspension compared with that of the MacPherson suspension. This work provided the foundations for the engineering design of a rectilinear rear independent suspension.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Elastokinematics of a rectilinear rear independent suspension;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2016-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3