Downhill safety assistance control for hybrid electric vehicles based on the downhill driver’s intention model

Author:

Luo Yugong1,Han Yunwu1,Chen Long1,Li Keqiang1

Affiliation:

1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, People’s Republic of China

Abstract

Assisting the control of a vehicle’s speed while driving downhill improves the vehicle’s safety and reduces the driver’s workload in both internal-combustion engine vehicles and hybrid electric vehicles. The current technology widely used in internal-combustion engine vehicles is a hill descent control system. However, hill descent control can be achieved only at lower speeds, but it may also lead to thermal wear of the brake components during prolonged intensive braking. There is currently no effective downhill safety assistance control technology for hybrid electric vehicles that is effective across the full range of speeds and can take advantage of regenerative braking. To address the limitations of previous studies, a novel downhill safety assistant control strategy for hybrid electric vehicles, which adapts to the characteristics of different drivers and takes advantage of all braking subsystems of hybrid electric vehicles, is proposed in this paper to improve the vehicle safety, the fuel economy and the ride comfort for the full range of speeds. To adapt to the characteristics of different drivers, the downhill driver’s intention model is established on the basis of a statistical data analysis of questionnaires and experiments, which is used to determine the control mode’s switching conditions and the control objective for downhill safety assistant control. To improve the vehicle safety, the fuel economy and the ride comfort for the full speed range, a coordinated control strategy for the electric motor’s braking subsystem, the engine’s braking subsystem and the hydraulic braking subsystem is developed, which includes six braking assistant modes, an identifying strategy and torque control of the electric motor based on coordinated control strategies. Simulations and experimental results show that the proposed control strategy improves the vehicle safety, the fuel economy and the ride comfort of hybrid electric vehicles during downhill driving.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3