Design and investigation of pole assignment controller for driving nonlinear electro hydraulic actuator with new active suspension system model

Author:

Al-Zughaibi Ali12ORCID,Xue Yiqin1,Grosvenor Roger1,Okon Aniekan1

Affiliation:

1. Cardiff School of Engineering, Cardiff University, Cardiff, UK

2. College of Engineering, University of Kerbala, Kerbala, Iraq

Abstract

Fully active electrohydraulic control of a quarter-car test rig is considered from both a modelling and experimental point of view. This paper develops a nonlinear active hydraulic design for the active suspension system, which improves the inherent trade-off between ride quality and suspension travel. The novelty is in the use of pole assessment controller to drive a nonlinear active suspension with a new insight into the model through consideration of a new term, friction forces. Therefore, this model has taken into account the dynamic inclination angle [Formula: see text] between linkage and actuator regardless of the fact that the designer made an only vertical motion (bounce mode) of the wheel and body units. The second contribution of this paper is that it investigated the control force generation, therefore, the nonlinear hydraulic actuator whose effective bandwidth depends on the magnitude of the suspension travel, which incorporates the dynamic equation of servovalve, is deeply researched. The nonlinear friction model is accurately established, which relies on the dynamics system analysis and the fact of slipping the body on lubricant supported bearings; this model will caption all the friction behaviours that have been observed experimentally. In addition, the hydraulic system is used to generate the system inputs as a road simulator. The controller smoothly shifts its focus between the conflicting objectives of ride comfort and rattle space utilisation, softening the suspension when suspension travel is small and stiffening it as it approaches the travel limits. Thus, the nonlinear design allows the closed-loop system to behave differently in different operating regions. The improvement achieved with our design is illustrated through comparative experiments and simulations. C++ compiler environment is used to simulate the physical system to be controlled. The results show good servo control and fast regulation of abrupt disturbances.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference44 articles.

1. Brogan WL. Modern control theory. New Jersey: Prentice Hall, 1991, p.317.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Analysis of the Static and Dynamic Behavior of the Hydraulic Compensation System of a Multichannel Valve;Fluid Dynamics & Materials Processing;2023

2. Design of robust control strategy for nonlinear wind turbine under parametric uncertainty;THE FOURTH SCIENTIFIC CONFERENCE FOR ELECTRICAL ENGINEERING TECHNIQUES RESEARCH (EETR2022);2023

3. Simulation study of a linear quadratic control for active seat suspension systems;THE 6TH INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT, EPIDEMIOLOGY AND INFORMATION SYSTEM (ICENIS) 2021: Topic of Energy, Environment, Epidemiology, and Information System;2023

4. Review of the semi-active suspension system with MR damper technology;4TH INTERNATIONAL SCIENTIFIC CONFERENCE OF ALKAFEEL UNIVERSITY (ISCKU 2022);2023

5. Generalized Fuzzy Subset Method for Time-Varying Multi-State Reliability of Perturbation Failure Coupling Measurement System With Limited Expert Knowledge;IEEE Transactions on Fuzzy Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3