A safety-guaranteed game-theoretical velocity planning for autonomous vehicles on sharp curve roads

Author:

Chen Qitong1ORCID,Dong Zhao1,Liu Congzhi2ORCID,Li Liang3ORCID

Affiliation:

1. Beijing Forestry University, Beijing, China

2. Chongqing University, Chongqing, China

3. Tsinghua University, Beijing, China

Abstract

In this paper, a safety-guaranteed game-theoretical velocity planning framework in a hierarchical manner is proposed to generate safe, ride comfort, and travel efficiency-balanced velocity for autonomous vehicles (AVs). In the upper layer, a bang-bang decision-making method is utilized to determine which planning mode to be implemented based on acceleration and jerk constraints, including a comfort mode, an efficiency mode, and a game mode. In the lower layer, asymmetric jerk limits based on comfort characteristics sensibility analysis and safe velocity simultaneously considering longitudinal and lateral stability are firstly developed to maintain ride comfort and driving safety, respectively on curve roads, especially sharp curves where vehicle stability may be not fully considered in most researches. Based on these, a non-cooperative game-theoretical velocity planning method is presented to solve the conflict between comfort mode and efficiency mode by optimizing his own objective based on the other’s action. Finally, for the sake of solving efficiency and accuracy, a chaos optimization-based algorithm (COA) is designed to solve for the Stackelberg equilibrium solution of the bilevel game optimization problem. Three experimental tests are carried out to comprehensively demonstrate the effectiveness, robustness, and real time of the proposed framework. The results show that the proposed method can provide the great performance of ride comfort, travel efficiency, and longitudinal-lateral stability in real time in the velocity planning process.

Funder

National Science Fund of the Peoples Republic of China

Central Guidance on Local Science and Technology Development Fund of Hebei Province

Open Fund of State Key Laboratory of Automotive Safety and Energy of Tsinghua University

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3