Affiliation:
1. Mechatronic Systems for Combustion Engines, RWTH Aachen University, Aachen, Germany
Abstract
48V systems enable not only mild hybrid functionalities such as recuperation or torque assist by a belt-driven starter generator (BSG), but also electrification of accessories and the engine boosting system. To maximize the powertrain efficiency, a proper layout of the electrified system and an optimized distribution of the electric power during transient operation is essential. In this study, a vehicle co-simulation of a conventional powertrain with a downsized turbocharged gasoline engine is extended by a 48V system with an electric compressor (eC) and a BSG. The control functions of the eC and BSG are based on a state-of-the-art vehicle application and calibrated for transient operating conditions. The engine model, which is built using a one-dimensional crank angle resolved approach in GT-POWER, has been validated with measurement data and is used to predict the interaction between the eC and the engine air path. The investigations using the simulation platform show that the 48V eC and the BSG can significantly improve the fuel effïciency if the electric energy consumption is initially neglected. However, when considering the electric energy consumption within the vehicle co-simulation, efficient operation is particularly depending on driver torque demand, the battery state-of-charge and charging effïciency. Hence, intelligent operating strategies are necessary to take advantage of the better torque response and improve fuel consumption at the same time.
Funder
Horizon 2020 Framework Programme
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献