Adaptive endocrine PID control for active suspension based on reinforcement learning

Author:

Li Nan1ORCID,Shi Yan1

Affiliation:

1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China

Abstract

Recent research has focused on active suspension systems because of their real-time ability to adapt to a variety of road surfaces, external perturbations, and potential to control the smoothness of vehicles. Since the parameters of conventional PID controllers used for active suspension control have limitations due to their inability to adapt to external changes, the fuzzy PID controllers are developed to overcome such limitations. However, fuzzy control have certain disadvantages related to the manual definition of fuzzy rules and variables. In this paper, a first step in improving the robustness of the PID control is to use the endocrine framework, which is considered to be highly nonlinear and complex in the vehicle suspension system. A deep reinforcement learning algorithm is then used to train the intelligence to provide an efficient strategy for adaptive gain adjustment for the endocrine PID, which requires no prior knowledge of active suspension control. The dynamics of the whole vehicle are modeled using ADAMS to analyze the dynamic characteristics of the vehicle at different speeds and road surfaces. The results show that the active suspension based on deep reinforcement learning controlling reduces vertical acceleration of the body more effectively and improves ride comfort more efficiently without sacrificing dynamic suspension deflection or dynamic tire load as compared with passive suspension or fuzzy PID suspensions. Further, the controller performs well under conditions such as changing road grades and vehicle speeds, indicating a good generalization.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3