Synergistic thermal management of lithium-ion batteries in electric two-wheelers: Critical analysis and ranking of multifaceted strategies and numerical validation

Author:

Mohanan Anikrishnan1,Chidambaram Kannan1ORCID

Affiliation:

1. School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamilnadu, India

Abstract

The paradigm shift from conventional to electric propulsion has become one of the pivotal foci of research areas. In the electric vehicle domain which encompasses a range of vehicles from two-wheelers to multi-wheelers, the battery thermal management system and its design variations are receiving the utmost attention. This article explores an array of distinct cooling strategies viz. evaporative, refrigeration assisted, mist, vapour chamber, thermoelectric and MEMS membrane cooling for lithium-ion batteries with their specifications, prominent attributes, advantages, limitations and thermal mitigating measures with potential future possibilities for electric two-wheelers. Grey relational analysis (GRA) is adopted to rank the cooling schemes disclosed that mist cooling is the most optimal for electric two-wheelers and this recommendation is substantiated with a numerical approach. The numerical results unveiled that the multi-strategical approach of mist cooling and forced convection attenuated the peak cell temperature by 13% and 24% when compared to stand-alone mist cooling and the system without external cooling assistance. This stands as evidence for the increased effectiveness of multi-strategical approaches. The article would help in creating the most practical combinational cooling solutions to lessen the danger of a thermal runaway with lithium-ion batteries, in particular, implemented in electric two-wheelers.

Funder

Royal Academy of Engineering

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3