Car-following stability improvement of cooperative adaptive cruise control based on distributed model predictive control

Author:

Wang Yiping123ORCID,Wang Shixuan123ORCID,Su Chuqi123,Li Xueyun123ORCID,Zhang Qianwen123,Zhang Zhentao123,Tian Mohan123

Affiliation:

1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan, China

2. Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan, China

3. Hubei Technology Research Center of New Energy and Intelligent Connected Vehicle Engineering, Wuhan University of Technology, Wuhan, China

Abstract

To solve the problem of large fluctuation of vehicle following distance in cooperative adaptive cruise control (CACC), a distributed model predictive control (DMPC) strategy is proposed. The idea of hierarchical control is performed to control the CACC system. The controller is divided into an upper controller and a lower controller. The upper controller calculates the expected acceleration of the vehicle according to the platooning state, and the lower controller controls the throttle and braking system pressure of the vehicle according to the expected acceleration. Firstly, the longitudinal dynamic model of vehicle platooning is established. Secondly, the objective function is designed according to the control objectives, so that the platooning can obtain the optimal control quantity at the current time. Meanwhile, the robust design is used to improve the controller performance, and the optimization of reference trajectory and the extension of feasible domain are used to improve the stability of the controller. Car-following Stability therefore can be improved. Then the lower controller is designed based on a reverse engine model and a reverse braking model. Finally, the effectiveness of the designed control strategy is verified by the co-simulation of Carsim and MATLAB/Simulink. The results show that DMPC can reduce the peak value, the standard deviation, and the root mean square of vehicle following distance error and improve the following stability.

Funder

Hubei Key Technologies Research and Development Program

Hubei Key Project of Research and Development Plan

Higher Education Discipline Innovation Project

The support enterprise technology innovation and development projects

the Science and technology industrialization fund project of Xiangyang Technology Transfer Center of Wuhan University of Technology

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3