A model free controller based on reinforcement learning for active steering system with uncertainties

Author:

Zhao Jintao1ORCID,Cheng Shuo1ORCID,Li Liang1ORCID,Li Mingcong1,Zhang Zhihuang1

Affiliation:

1. State Key Laboratory of Automotive Safety and Energy, Tsinghua Univ., Beijing, China

Abstract

Vehicle steering control is crucial to autonomous vehicles. However, unknown parameters and uncertainties of vehicle steering systems bring a great challenge to its control performance, which needs to be tackled urgently. Therefore, this paper proposes a novel model free controller based on reinforcement learning for active steering system with unknown parameters. The model of the active steering system and the Brushless Direct Current (BLDC) motor is built to construct a virtual object in simulations. The agent based on Deep Deterministic Policy Gradient (DDPG) algorithm is built, including actor network and critic network. The rewards from environment are designed to improve the effectiveness of agent. Simulations and testbench experiments are implemented to train the agent and verify the effectiveness of the controller. Results show that the proposed algorithm can acquire the network parameters and achieve effective control performance without any prior knowledges or models. The proposed agent can adapt to different vehicles or active steering systems easily and effectively with only retraining of the network parameters.

Funder

Electric Automobile and Intelligent Connected Automobile Industry Innovation Project of Anhui Provinc

Key Research and Development Projects in Shandong Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Control of a nonlinear active suspension system based on deep reinforcement learning and expert demonstrations;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-09-13

2. Cloud-Based Reinforcement Learning in Automotive Control Function Development;Vehicles;2023-08-02

3. Vehicle dynamics response due to the adjustment of K&C parameters with the aid of a dynamic simulator with 9 DOF and a correlated virtual model;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3