Effects and mechanism of pilot diesel injection strategies on combustion and emissions of natural gas engine

Author:

Binyang Wu1,Puze Yang1,Yinmi Luo1ORCID,Zhi Jia1

Affiliation:

1. State Key Laboratory of Engines, Tianjin University, Tianjin, China

Abstract

The research objectives of pilot diesel injection (PDI) ignition natural gas technology include high efficiency, clean combustion, and low pilot diesel mass. This study is based on a single-cylinder thermodynamic engine, combined with the CONVERGE simulation model and CHEMKIN chemical reaction kinetics model. The effects and mechanisms of various PDI strategies on the mixture equivalent ratio, temperature, and characteristics of combustion and emissions were investigated. The experimental results showed that the best PDI mass was 8 mg/cycle. The thermal atmosphere and activity in the cylinder were improved with an increase in PDI mass from 2 to 8 mg/cycle, which stabilized the mixture combustion. Further, the effects of different pilot injection timing (PIT) on combustion and emissions were investigated via experiments and simulation by controlling the operating conditions and maintaining a constant PDI total mass. The results show that the diesel had a single low-temperature reaction path when the PIT was close to the top dead center, whereas the PIT at the early stage of the compression stroke (CS) changed the chemical reaction path and accelerated the transformation of CH3 to CH2O, accumulating numerous active groups and accelerating the combustion rate, which is difficult to control the ignition phase. The reaction path of the double PDI strategy was similar to that of the PIT at the early CS stage, and its combustion is closed to premixed combustion; however, the accumulation of active groups was relatively small, and the combustion rate was relatively slow because the ignition phase was controlled by the second PDI, making the combustion phase easy to control. Finally, with the double PDI strategy that had the advantages of efficient combustion and avoidance of knock, the gross indicated thermal efficiency reached 49.3% that involved a −60°crank angle (CA) after top dead center (ATDC) first injection and −4°CA ATDC second injection.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3