Real-time estimation of tire–road friction coefficient based on lateral vehicle dynamics

Author:

Hu Juqi1,Rakheja Subhash1,Zhang Youmin1ORCID

Affiliation:

1. Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada

Abstract

This study proposes a two-stage framework for real-time estimation of tire–road friction coefficient of a vehicle on the basis of lateral dynamics of the vehicle. The estimation framework employs a new cascade structure consisting of an extended Kalman filter and two unscented Kalman filters to reduce the computational burden. In the first stage, extended Kalman filter is utilized to estimate lateral velocity of the vehicle and thereby both the front and rear tires’ side-slip angles. In the second stage, a two–unscented Kalman filters sub-framework is formulated in sequence to observe both the front- and rear-axle tire forces, and to subsequently identify their respective tire–road friction coefficient, regarded as two unknown states. All the measured signals required in the study could be realized from the conventional on-board sensors. Typical double-lane change and single-lane change maneuvers were designed and the developed algorithm was verified through CarSim–MATLAB/Simulink software platform considering high-, mid-, and low-friction road conditions. The simulation results show that the proposed method can yield accurate and rapid estimations of the tire–road friction coefficient for mid- and low-friction road conditions even under a single-lane change maneuver, although double-lane change maneuver is needed to accurately estimate the tire–road friction coefficient for high-friction road condition.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3