Comparison of hydrodynamic and acoustic pressure on automotive front side window

Author:

Yuan Haidong1ORCID,Yang Zhigang234

Affiliation:

1. School of Electrical and Information Engineering, Tianjin University, Tianjin, China

2. Shanghai Automotive Wind Tunnel Center, Tongji University, Shanghai, China

3. Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Tongji University, Shanghai, China

4. Beijing Aeronautical Science & Technology Research Institute, Beijing, China

Abstract

The unsteady flow in the front side window region of the vehicle can generate hydrodynamic and acoustic pressure on the front side window, which can influence the interior sound field. The hydrodynamic pressure on the front side window was achieved by the incompressible wall-modeled large-scale eddy simulation (WMLES) or improved delayed detached eddy simulation (IDDES), and the hybrid computational aeroacoustics (CAA) method based on acoustic perturbation equations (APE) was employed to achieve the acoustic pressure on the front side window. The numerical results of both hydrodynamic and acoustic pressure ware validated by the wind tunnel experiment, especially the corrected force analysis technique (CFAT) is employed to validate the acoustic pressure. The comparison of hydrodynamic and acoustic pressure on the front side window was performed by the Dynamic Mode Decomposition (DMD). Results show that the hydrodynamic pressure regionally distributes on the front side window and most energy concentrates on area interacted with the side mirror wake, while the acoustic pressure distributes uniformly on the front side window acting as a diffusion field and the energy disperses in frequency region.

Funder

Shanghai Key Laboratory of Aerodynamics and Thermal Environment Simulation for Ground Vehicles

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3