Stochastic assessment of electric powertrain whining noise under early-stage design uncertainties

Author:

Prakash Vinay12ORCID,Sauvage Olivier1,Antoni Jérôme2,Gagliardini Laurent3,Totaro Nicolas2

Affiliation:

1. Stellantis N.V., Virtual Engineering, Poissy, France

2. INSA Lyon, LVA, UR677, Villeurbanne, France

3. Stellantis N.V., NVH Department, Vélizy-Villacoublay, France

Abstract

Despite the advantage of being quieter than traditional internal combustion engine vehicles, electric vehicles are often distinguished by high-frequency tonal components, which can be perceived as unpleasant to the occupants and the environment. To ensure optimal acoustic comfort in electric vehicles, it is important to analyze the NVH behavior of e-powertrains during the early stages of the design process which poses inherent uncertainties, such as varying operating conditions, partial knowledge of design parameters, dispersion in measurement-based data, etc. To effectively address these uncertainties, it is necessary to use fast and comprehensive stochastic models during the design phase. In this work, a probabilistic framework is presented to estimate the electric powertrain’s interior whining noises considering the structure-borne contribution. Hence, two different stochastic metamodels are developed for efficient quantification and propagation of uncertainties from electric motor stage to powertrain mounting system. Multivariate Bayesian regression models help to incorporate prior knowledge on the uncertain parameters and generate the respective posterior distributions using Markov chains Monte Carlo (MCMC) techniques. For this particular application, the data is generated through weakly-coupled multi-physical domains estimated using semi-analytical approaches and combined with measured vehicle transfer functions. Importantly, the validation of each domain is conducted separately to ensure accurate representation. The results obtained from the developed probabilistic framework will aid in the early design stages by guiding engineers in making informed decisions to optimize NVH performance.

Funder

HORIZON EUROPE Marie Sklodowska-Curie Actions

Publisher

SAGE Publications

Reference50 articles.

1. Bibra EM, Connelly E, Dhir S, et al. Global EV outlook 2022: securing supplies for an electric future, https://trid.trb.org/view/2005689 (2022 accessed May 5 2023).

2. Interior noise and vibration prediction of permanent magnet synchronous motor

3. The construction and implementation of metamodels

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3