Affiliation:
1. School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
Abstract
This article describes the design, implementation, and evaluation of an active lane change control algorithm for autonomous vehicles with human factor considerations. Lane changes need to be performed considering both driver acceptance and safety with surrounding vehicles. Therefore, autonomous driving systems need to be designed based on an analysis of human driving behavior. In this article, manual driving characteristics are investigated using real-world driving test data. In lane change situations, interactions with surrounding vehicles were mainly investigated. And safety indices were developed with kinematic analysis. A safety indices–based lane change decision and control algorithm has been developed. In order to improve safety, stochastic predictions of both the ego vehicle and surrounding vehicles have been conducted with consideration of sensor noise and model uncertainties. The desired driving mode is decided to cope with all lane changes on highway. To obtain desired reference and constraints, motion planning for lane changes has been designed taking stochastic prediction-based safety indices into account. A stochastic model predictive control with constraints has been adopted to determine vehicle control inputs: the steering angle and the longitudinal acceleration. The proposed active lane change algorithm has been successfully implemented on an autonomous vehicle and evaluated via real-world driving tests. Safe and comfortable lane changes in high-speed driving on highways have been demonstrated using our autonomous test vehicle.
Funder
Korea Ministry of Land, Infrastructure, and Transport
korea agency for infrastructure technology advancement
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献