FEGNet: A feature enhancement and guided network for infrared object detection in underground mines

Author:

Huang Lisha12ORCID,Zhang Xi12,Yu Miao12,Yang Songyue3ORCID,Cao Xiao12,Meng Junzhou12

Affiliation:

1. China University of Mining and Technology-Beijing, Beijing, China

2. Key Laboratory of Intelligent Mining and Robotics, Ministry of Emergency Management, Beijing, China

3. Beihang University, Beijing, China

Abstract

Object detection plays an important role in underground intelligent vehicles and intelligent transportation systems. Due to the uneven light in underground mining scenarios, infrared cameras are one of the typical onboard sensors for environmental perception. Although object detection has been studied for decades, it still confronts the challenge of detecting infrared objects in underground mines. The contributing factors include weak and small objects in infrared images and similar environments in mining scenarios. In this paper, a Feature Enhancement and Guided Network (FEGNet) is proposed to address these problems. Based on the characteristics of infrared images, the feature enhancement module (FEM) preserves the image details from global and local perspectives to improve the discrimination of weak and small objects. To tackle the problem of overfitting caused by similar environments, a receptive-field-guided (RFG) backbone is proposed to learn multi-scale context and spatial information. The experimental results on the underground mining (UM) dataset demonstrate that the mAP of the proposed FEGNet achieves 86.1%, which is 4.6% higher than the state-of-the-art CNN-based network YOLOv7.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3