Research on tyre mechanics model for multi-axle coordinated steering of heavy vehicles

Author:

Liu Qihui12ORCID,Du Heng12ORCID,Zhu Xiaowei12ORCID,Ren Tianyu12,Guo Kun3

Affiliation:

1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, Fujian, China

2. Key Laboratory of Fluid Power and Intelligent Electro-Hydraulic Control (Fuzhou University), Fujian Province University, Fuzhou, Fujian, China

3. Zoomlion Heavy Industry Science and Technology Co., Ltd., Changsha, China

Abstract

Compared with passenger cars, heavy vehicles have larger loads, longer bodies, more steering modes, and are more likely to cause improper steering angle relationships among the wheels, resulting in uncoordinated steering. This uncoordinated steering makes the tyres roll and drag, which results in abnormal lateral and longitudinal slips, changing the lateral and longitudinal mechanical characteristics of tyres and leading to low path tracking accuracy and poor steering performance of vehicles. Therefore, a tyre model containing lateral and longitudinal mechanical characteristics under heavy load is the key to solving the problem of uncoordinated steering in heavy vehicles. Firstly, with the physical tyre model, the lateral and longitudinal slip is described as carcass deflections. With the carcass deflections and contact pressure distribution of heavy load, the tyre forces under uncoordinated steering conditions are derived. Then, the tyre imprint parameters are obtained with a test bench, and a two-dimensional contact pressure distribution model is established to reproduce the contact pressure distribution of tyre under heavy loads and dynamic slips. The comparison results with Magic Formula (MF) and Trucksim are generally consistent, proving the effectiveness of the model. Finally, a lateral and longitudinal tyre force distribution control of vehicles is carried out based on the established model. The results of the Trucksim-Simulink co-simulation show that the path tracking accuracy of vehicles is significantly improved, which demonstrates that the tyre model incorporating lateral and longitudinal mechanical characteristics under heavy loads can provide a theoretical basis for solving the problem of uncoordinated steering in heavy vehicles.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3