Development of a real-time steering system model for driving simulators

Author:

Certosini Cesare1ORCID,Vinattieri Francesco1,Capitani Renzo1,Annicchiarico Claudio2

Affiliation:

1. Department of Industrial Engineering, University of Florence, Florence Italy

2. Meccanica 42 s.r.l., Sesto Fiorentino, Florence, Italy

Abstract

Driving simulators have boosted the vehicle design with the introduction of human beings in the simulation loop. For a realistic functioning, the steering system must provide an accurate behaviour, since the hand wheel is a crucial human interface. Despite a large diffusion of steering models, this paper deals with the creation of a specific solution for real-time applications, characterized by precise features as numerical stability and low computational cost. The proposed model is based on a physical structure and considers all the key phenomena, such as the system elasticities, the power steering effects and friction hysteresis, making the model more accurate in terms of steering wheel torque and lateral acceleration than other angle-driven models. Its two degrees of freedom design allows a proper behaviour of the power steering sub-model; another key aspect is the friction model: the use of the LuGre formulation greatly improves accuracy and stability in comparison to the lookup table friction models. Compared to the literature reference torque-driven model, it does not need the use of a torque sensor when implemented in driving simulators having an angle-driven formulation (the input of the steering wheel is its angle and the torque needed is its output), hence it is cheaper to implement; nevertheless, its accuracy is close to state-of-art reference. An original parametrization procedure is proposed since a generalized one is not available in literature; using a steering test-rig, all the model variables are defined. The validation phase combines offline and online simulations, assessing objectively and subjectively the model’s capabilities and showing accurate results in terms of steering wheel torque, lateral acceleration and steering feeling. In addition, a minor contribution of this paper shows how different analyses (steering effort evaluation, experimental data comparison or simulator feedback computation) require different output torques.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An innovative generalization method for data-driven models of steering feedback torque;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-12-13

2. Steering System Simulation during the Concept Phase regarding Feedback Behavior;SAE International Journal of Vehicle Dynamics, Stability, and NVH;2022-03-29

3. Experimental Validation of Torque-Based Control for Realistic Handwheel Haptics in Driving Simulators;IEEE Transactions on Vehicular Technology;2022-01

4. Exploring the association of riders’ physical attributes with comfortable riding posture and optimal riding position;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2021-05-06

5. Development and validation of a simplified automotive steering dynamic model;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2021-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3