Affiliation:
1. Department of Electromechanical Engineering, University of Macau, Taipa, Macau, China
2. Zhuhai UM Science and Technology Research Institute, Zhuhai, China
Abstract
The electronically controlled semi-active air suspension systems have been widely used to improve the vehicle ride comfort and road holding performance by adjusting the damper stiffness. This work focuses on the design of a damping force controller to enhance the ride comfort, road holding and stability under the presence of unknown air spring pressure. Firstly, an improved skyhook suspension reference model is developed to generate the desired dynamic criteria (i.e. vehicle body acceleration, pitch and roll angles). Secondly, by employing the backstepping technique, a novel damping force controller is proposed to approach the desired dynamic criteria. Thirdly, a parameter estimation method is also designed to estimate the air spring pressure to obtain the air spring force. Comparative studies are carried out among passive suspension systems, and the semi-active air suspension systems with the proposed model reference damping force control, traditional backstepping control and existing sliding mode control. Numerical results show that a significant improvement of ride comfort can be observed with the semi-active air suspension system based on the proposed model reference backstepping controller.
Funder
China Postdoctoral Science Foundation
Universidade de Macau
Natural Science Foundation of Guangdong Province of China
National Natural Science Foundation of China
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献