Analysis and research on vehicle wading performance

Author:

Xin Zheng12ORCID,Donghai Su1

Affiliation:

1. Shenyang University of Technology, Shenyang, China

2. Brilliance Automotive Engineering Research Institute, Shenyang, China

Abstract

With the inclusion of the effects from wheels rotation, vehicle wading phenomenon was simulated using computational fluid dynamics tools and compared with road wading test. The new method utilizing the volume of fluid model to simulate the two-phase (water and air) flow when vehicle wades, Reynolds-Averaging Navier–Stokes simulation with both Realizable and shear stress transport turbulent models were conducted and the results indicated that the essential features of vehicle wading phenomenon were captured accurately. A relatively better correlation is achieved between computational fluid dynamics analysis and road test when shear stress transport turbulent model was utilized compared to using Realizable turbulent model. With the addition of the wheel rotation effects in vehicle wading simulation, the potential risks of water intrusion into the critical chassis and electronic components can be early detected and the frequent late design changes can be avoided. The new approach adopted in this study with VOF model and RANS simulation with SST turbulent model has shown that the benefits of shorter vehicle development cycles and parts warranty cost reduction. Thus, the results from computational fluid dynamics simulation with wheel rotation effects included can serve as the design guidance for any future vehicle wading developments.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3