Acoustic attenuation performance of a perforated resonator with a multi-chamber and its optimal design

Author:

Guo Rong12,Zhu Wei-wei12

Affiliation:

1. School of Automotive Studies, Tongji University, Shanghai, People’s Republic of China

2. Clean Energy Automotive Engineering Center, Tongji University, Shanghai, People’s Republic of China

Abstract

A perforated resonator can attenuate the broadband noise generated by the air intake system of a turbocharged engine. This paper mainly focuses on the sound transmission theory of a perforated resonator with a multi-chamber. The numerical decoupling method for a perforated resonator with a single chamber is extended to a perforated resonator with a multi-chamber in order to calculate the transmission loss. To verify the modified algorithm, a two-microphone method is adopted to measure the transmission loss of the resonator. The measurement uncertainty of the experiment is discussed further. The experimental and analytical results on the resonator are presented, and good agreement is found. To determine the optimal structural parameters of the resonator in order to match the given target, a modified algorithm obtained by using the non-linear least-squares method is proposed for the resonator, and a detailed analysis of the selection of the design variables and optimization modes with different design variables is carried out. The optimized results show that all optimization modes can meet the target curve. Therefore, it provides multiple solutions for researchers to determine flexibly the best solution. Finally, a robustness analysis is carried out to show that the variations in the structural parameters have little effect on the transmission loss. It is expected that the research methods and conclusions of the study can provide theoretical support and application guidance for the sound design of a turbocharged engine air intake system.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3