An integrated artificial neural network–unscented Kalman filter vehicle sideslip angle estimation based on inertial measurement unit measurements

Author:

Novi Tommaso1ORCID,Capitani Renzo1,Annicchiarico Claudio2

Affiliation:

1. Department of Industrial Engineering, University of Florence, Florence, Italy

2. Meccanica 42 Srl, Florence, Italy

Abstract

Vehicle dynamics stability control systems rely on the amount of so-called sideslip angle and yaw rate. As the sideslip angle can be measured directly only with very expensive sensors, its estimation has been widely studied in the literature. Because of the large non-linearities and uncertainties in the dynamics, model-based methods are not a good solution to estimate the sideslip angle. On the contrary, machine learning techniques require large datasets that cover the entire working range for a correct estimation. In this paper, we propose an integrated artificial neural network and unscented Kalman filter observer using only inertial measurement unit measurements, which can work as a standalone sensor. The artificial neural network is trained solely with numerical data obtained with a Vi-Grade model and outputs a pseudo-sideslip angle which is used as input for the unscented Kalman filter. This is based on a kinematic model making the filter completely transparent to model uncertainty. A direct integration with integral damping and integral reset value allows the estimation of the longitudinal velocity of the kinematic model. A modification strategy of the pseudo-sideslip angle is then proposed to improve the convergence of the filter’s output. The algorithm is tested on both numerical data and experimental data. The results show the effectiveness of the solution.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3