The effects of grooved rubber blocks on stick–slip and wear behaviours

Author:

Wang Xiao Cui1,Mo Ji Liang1ORCID,Ouyang Huajiang2,Lu Xiao Dong1,Huang Bo1,Zhou ZR1

Affiliation:

1. Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China

2. School of Engineering, University of Liverpool, Liverpool, UK

Abstract

This work presents an experimental and theoretical combined study of the effects of the elastic rubber blocks with different surface modifications on the friction-induced stick–slip oscillation and wear of a brake pad sample in sliding contact with an automobile brake disc. The experiments are conducted on the customized experimental setup in a pad-on-disc configuration. The experimental results show that (1) the friction system with the plain rubber block still exhibits visible stick–slip oscillation, but the intensity of the stick–slip oscillation is reduced to a certain degree compared with the Original friction system (without rubber block); (2) the grooved rubber blocks display a better ability to reduce the stick–slip oscillation compared with the plain rubber block; (3) the rubber blocks with a vertical groove (perpendicular to the relative velocity) or a horizontal groove (parallel to the relative velocity) or a diagonal groove (45° inclined to the relative velocity) on their surfaces can suppress the stick–slip oscillation more effectively with various degrees of success. The experimental results also reveal the varying effects of the different rubber blocks on wear. To explain the experimental phenomenon reasonably, a theoretical analysis is conducted to investigate the effects of different rubber blocks on both stick–slip oscillation and wear using ABAQUS. Furthermore, the analysis of the contact pressure on the pad interfaces and the deformation of the rubber blocks are studied to provide a possible explanation of the experimental results.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3