Research on layered control of path tracking for unmanned industrial vehicles based on fully hydraulic steering leakage compensation

Author:

Xia Guang123ORCID,Wu Shibiao12,Tang Xiwen4,Zhang Yang12ORCID,Zhao Linfeng1

Affiliation:

1. School of Automotive and Traffic Engineering, Hefei University of Technology, Hefei, China

2. Institute of Automotive Engineering, Hefei University of Technology, Hefei, China

3. Key Laboratory for Automated Vehicle Safety Technology of Anhui Province, Hefei, China

4. College of Electronic Engineering, National University of Defense Technology, Hefei, China

Abstract

Industrial vehicles work in complex terrain, the variable centre of mass position, leakage nonlinearity of full hydraulic steering and other issues lead to poor path tracking stability and accuracy. In this paper, an intelligent hierarchical controller for industrial vehicles’ path tracking is designed with full hydraulic steering leakage compensation, including an upper decision layer and a lower execution layer. The upper decision layer observes the pavement-tyre adhesion coefficients through an extended Kalman filter algorithm, and uses the real-time observations of the adhesion coefficients to establish a variable constraint control for the linear time-varying MPC, and thus performs the path tracking control. The lower actuator layer receives the upper layer’s target steering wheel angle output and performs steering operations. Based on the establishment of a mathematical model of full hydraulic steering considering the leakage characteristics, it analyses the leakage disturbance factors and constructs a fuzzy feed-forward steering leakage compensation controller to compensate for the leakage disturbances in real time for path tracking steering. Simulation and experimental results show that the lateral acceleration, sideslip angle, tyre side slip angle and tracking error of intelligent industrial vehicles under different loads and working conditions are improved by more than 32.4%, 35.8%, 40.2% and 45.8% respectively, and the designed hierarchical controller for the path tracking of intelligent industrial vehicles, which considers the compensation of all-hydraulic steering leakage, can effectively improve the path tracking stability and tracking accuracy of intelligent industrial vehicles under different loads and working conditions.

Funder

National Natural Science Foundation of China

the Anhui Provincial Key Research and Development Project

Fundamental Research Funds for the Central Universities of China

Hefei University of Technology-NIO Innovation Research Institute

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3