Parametric analysis of the potential of energy harvesting from commercial vehicle suspension system

Author:

Taghavifar Hamid1ORCID,Rakheja Subhash1

Affiliation:

1. CONCAVE Research Centre, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC, Canada

Abstract

An accurate estimation of the harvestable energy from a vehicle suspension under typical operating conditions is vital for design and implementation of efficient energy harvesters in vehicles. In this study, a generic three-dimensional model of a commercial vehicle is formulated by integrating nonlinear models of suspension components and tires to determine the harvestable power considering the effects of suspension parameters and road characteristics. The component characteristics of the suspension system and tires are obtained through the reported laboratory-measured data acquired under an extensive range of loading conditions. The vehicle model is subsequently employed to investigate the harvestable energy potential considering variations in the driving speed, chassis load, road waviness and roughness, suspension and tire stiffness, compression mode damping ratio, and asymmetric suspension damping over the most possible ranges of running conditions. The results suggested significant influences of these parameters, while the driving speed, damping asymmetry factor, compression mode damping ratio, and road condition revealed the most pronounced effect on the harvestable power. The results obtained in terms of root mean square and power spectral density of harvestable power are also indicative that rough terrains yield incomparably larger magnitudes of energy dissipation than relatively smooth road classes defined in ISO 8608:1995, and thereby suggestive of the greater potential of energy recovery from commercial vehicles on off-road surfaces.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3