An adaptive backstepping control strategy based on radial basis function neural networks for the magnetorheological semi-active suspension

Author:

Pan Zeyu1ORCID,Xiong Xin1ORCID,Chen Jialing1,Zhang Lingfeng1,Xu Fei1,Zhu Bing1

Affiliation:

1. School of Automotive Engineering, Yancheng Institute of Technology, Yancheng, China

Abstract

Owing to nonlinear issues such as external disturbances and uncertain parameters within the semi-active suspension system (SASS), the vibration amplitude of the suspension system tends to increase, and the time required for the suspension system to reach a steady-state response is prolonged. Hence, this paper proposes an adaptive backstepping control strategy based on radial basis function neural networks (RBF-NNs). Firstly, the damping force characteristics of the magnetorheological (MR) damper are tested, and the experimental data are utilized for parameters identification and fitting of the Bouc-Wen model. To establish a connection between the controller and the forward model of the MR damper, the forward model of the MR damper, the inverse model of the MR damper, and the model of the MR-SASS are constructed. Secondly, the backstepping controller and the adaptive backstepping controller based on RBF-NNs are designed. The stability and reliability of the closed-loop suspension system are verified through stability analysis using Lyapunov function. Finally, the dynamic characteristics of the passive control, backstepping control, and adaptive backstepping control strategies based on RBF-NNs applied to MR-SASS are analyzed under B-Class road excitation and speed bump road excitation. The acceleration, suspension dynamic deflection, and tire dynamic load are selected as the evaluation indices. The results demonstrate that the adaptive backstepping controller based on RBF-NNs significantly enhances the ride comfort of the SASS.

Funder

research initiation project on High-Level Talents at Yancheng Institute of Technology in 2023

Jiangsu Province Higher Education Basic Discipline (Natural Science) General Project

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3