Model-based sensor fault detection and isolation method for a vehicle dynamics control system

Author:

Li Chenfeng1,Li Hui1,Chen Yuzhong2,Dong Honglei2,Zhao Xun1,Xiao Lingyun2

Affiliation:

1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, People’s Republic of China

2. China National Institute of Standardization, Beijing, People’s Republic of China

Abstract

Conventional vehicle electronic stability control requires one steering-wheel angle sensor, one lateral acceleration sensor and one yaw rate sensor to obtain a good control performance. The control system stops working when a sensor fault is detected, which means that the vehicle runs in an unprotected state. Thus, various sensor fault diagnosis algorithms have been designed to detect and isolate the faulty sensor, but these algorithms also can be used for fault-tolerant control to preserve the safety of the vehicle. However, determining which of the different sensors is faulty is very difficult as the conventional residual comparison algorithm can only find the existence of a sensor fault but cannot locate the faulty sensor, and very few research studies have focused on this problem. In this paper, an ingenious sensor fault diagnosis algorithm is proposed. The sensor fault is detected, located and isolated by cross-checking with three different yaw rate estimates. The steering-wheel angle observer and the lateral acceleration observer are designed to provide corresponding estimated sensor signals which are employed to estimate the different yaw rates by using an extended Kalman filter. A novel decision-making process is carefully designed to locate the faulty sensor based on the different yaw rate residuals. Electronic stability control is not interrupted as the faulty sensor signal is reconfigured by the estimated signal. Experimental tests on a real car show that the proposed algorithm is efficient for detecting the sensor fault and identifying which sensor is faulty. Simulations show that the vehicle stability control strategy based on the proposed sensor fault-tolerant control algorithm has a better performance than the traditional control strategy does.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sensor fault estimation based on L∞ unknown input observer;IMA Journal of Mathematical Control and Information;2023-09-20

2. Steering angle sensorless control for four-wheel steering vehicle via sliding mode control method;Transactions of the Institute of Measurement and Control;2023-06-22

3. Active fault-tolerant control scheme for four-wheel independent drive electric vehicles under actuator faults;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-04-02

4. Adaptive estimations of tyre–road friction coefficient and body’s sideslip angle based on strong tracking and interactive multiple model theories;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2020-07-30

5. An analytical fault diagnosis method for yaw estimation of quadrotors;Control Engineering Practice;2019-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3