Optimal starting control strategy of compound power-split system based on dynamic programing algorithm

Author:

Wang Bo1ORCID,Zhang Zhendong1,Xu Zishun1

Affiliation:

1. University of Shanghai for Science and Technology, Shanghai, China

Abstract

Hybrid electric vehicle has the advantages of internal combustion engine vehicle and pure electric vehicle. The mode transition from EV (electric vehicle) mode to HEV (hybrid electric vehicle) mode requires frequent engine starting. The engine ripple torque (ERT) at low speed will affect the stable operation of the output shaft and has a significant impact on ride comfort. In order to improve the effect of mode transition process, the distribution of motor torque is optimized. The engine ripple torque model is established by combining theoretical formula with experimental data. The dynamic torque of the compound power-split model is decoupled. The mode transition process from EV mode to HEV mode is analyzed. Aiming at power, ride comfort and economy, the optimal starting control strategy of engine is designed based on dynamic programing algorithm. The influence factors of starting process are studied. When the optimization grid of motor torque is 5, the best trade-off between optimization accuracy and calculation cost is obtained. The results show that, the best ride comfort is obtained by using the dynamic programing algorithm when the speed is 30 km·h−1 and the load torque is −178 N·m. The starting effect is the best when the initial crank angle is 0° while the transient response time is 0.84 s, compared with the initial crank angle of 90°, the economy is improved by 21%.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3