A comparative study of static and dynamic properties of honeycomb non-pneumatic wheels and a pneumatic wheel

Author:

Zheng Zhou1ORCID,Rakheja Subhash1,Sedaghati Ramin1

Affiliation:

1. Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada

Abstract

Three-dimensional finite element (FE) models of the honeycomb NPWs with three different spokes’ configurations, realized by varying the cell angle, were formulated. The validity of the proposed NPW FE models was demonstrated by comparing the predicted wheel responses with the reported data. A FE model of the pneumatic wheel of identical size was also formulated and verified on the basis of the measured vertical force-deflection and cornering properties. The verified NPW models were subsequently employed to study their feasibility through comparisons of in-plane as well as out-of-plane properties with those of the pneumatic wheel. The influences of the cell angle and normal wheel load on the static and dynamic properties of the NPWs were also investigated. The results showed load-dependent longitudinal stiffness of the wheel due to strong coupling between radial and longitudinal deformations of the honeycomb spokes. The lateral stiffness, however, was observed to be load-independent due to negligible coupling between radial and lateral deformations of the spokes. The spokes of the honeycomb NPWs could thus be easily tuned to achieve vertical and longitudinal stiffness comparable to those of the reference pneumatic wheel. The lateral and cornering stiffness of the NPWs with the planar spokes, however, were substantially higher, irrespective of the spokes’ configuration considered. The significantly higher cornering stiffness resulted in rapid saturation of the cornering force of the NPWs at side-slip angles about 1.1°, which is likely to cause lateral sliding of the wheels and potential loss of directional control under higher side slip conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3