Affiliation:
1. Department of Electronics Convergence Engineering, Kwangwoon University, Seoul, Republic of Korea
2. Hyundai Kia Motors, Hwaseong-si, Gyeonggi-do, Republic of Korea
Abstract
An automotive junction box distributes electric power to electric systems installed in a vehicle with overcurrent protection. As a larger number of electric systems are installed, the junction box is equipped with more components, functionalities and connections. However, owing to the fuse accessibility, its installation space is so restricted that a downsized design is required for the junction box. The junction box is composed of small signal circuitry for control and monitoring, and large current-carrying circuitry for power distribution which includes many parallel traces. Because of these unique features, widely used techniques for downsizing printed-circuit boards are not applicable. Also, there is no rule for designing large current-carrying parallel traces, and it is difficult to optimize the size of the printed-circuit board for the automotive junction box. This paper presents the design rules for a printed-circuit board when downsizing a junction box. First, the layout strategy for the power distribution components is presented, which is determined by the sum of the squares of the currents flowing through connector pairs. Then, the thermal effects of parallel traces are simulated for different conditions by using thermal analysis software. Based on the results, an analytical estimation of the additional temperature rises due to parallel traces and rules for a thermally effective arrangement of the parallel traces are presented.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献