From fundamental study to practical application of kerosene in compression ignition engines: An experimental and modeling review

Author:

Lin Tay Kun1,Yu Wenbin1ORCID,Zhao Feiyang1ORCID,Yang Wenming1

Affiliation:

1. Department of Mechanical Engineering, National University of Singapore, Singapore

Abstract

The use of kerosene in direct injection compression ignition engines is fundamentally due to the introduction of the Single Fuel Concept. As conventional direct injection compression ignition diesel engines are made specifically to use diesel fuel, the usage of kerosene will affect engine emissions and performance due to differences between the fuel properties of kerosene and diesel. As a result, in order for kerosene to be properly and efficiently used in diesel engines, it is needful for the scientific community to know the properties of kerosene, its autoignition and combustion characteristics, as well as its emissions formation behavior under diesel engine operating conditions. Moreover, it is desirable to know the progress made in the development of suitable kerosene surrogates for engine applications as it is a crucial step toward the development of reliable chemical reaction mechanisms for numerical simulations. Therefore, in this work, a comprehensive review is carried out systematically to better understand the characteristics and behavior of kerosene under direct injection compression ignition engine relevant conditions. In this review work, the fuel properties of kerosene are summarized and discussed. In addition, fundamental autoignition studies of kerosene in shock tube, rapid compression machine, fuel ignition tester, ignition quality tester, constant volume combustion chamber, and engine are compiled and evaluated. Furthermore, experimental studies of kerosene spray and combustion in constant volume combustion chambers are examined. Also, the experimental investigations of kerosene combustion and emissions in direct injection compression ignition engines are discussed. Moreover, the development of kerosene surrogates, their chemical reaction mechanisms, and the modeling of kerosene combustion in direct injection compression ignition engines are summarized and talked about. Finally, recommendations are also given to help researchers focus on the areas which are still severely lacking.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3