A novel modular shallow mounted bollard system design and finite element performance analysis in ensuring urban roadside safety

Author:

Apak Mustafa Yurdabal1,Ergun Murat2,Ozen Halit3,Buyuk Murat4,Yumrutas Halil Ibrahim5,Ozcanan Sedat6ORCID,Atahan Ali Osman2ORCID

Affiliation:

1. R&D Center, Istanbul Gas Distribution Industry and Trade Incorporated Company, Istanbul, Türkiye

2. Department of Civil Engineering, Istanbul Technical University, Istanbul, Türkiye

3. Department of Civil Engineering, Yildiz Technical University, Istanbul, Türkiye

4. Integrated Manufacturing Technologies R&A Center, Sabanci University, Istanbul, Türkiye

5. Department of Civil Engineering, Karabuk University, Karabuk, Türkiye

6. Department of Civil Engineering, Sirnak University, Sirnak, Türkiye

Abstract

The safety of risky roadside zones such as kids’ playgrounds, schools, bus stops, petrol stations, critical roadside facilities, and pavements are becoming a significant worldwide problem. This study focused on the roadside safety of critical above-ground assets of natural gas grids due to its consequences such as fire, blast, traffic interruptions, service downtime, and consumer displeasure during the repair process. In this regard, a novel modular shallow mounted bollard system was designed considering the disadvantages of conventional bollard systems in the literature and the demands/needs of related institutions. Numerical simulations were carried out to analyze the structural and safety performance capabilities of the originally designed bollard system following PAS 68:2013 standard. In addition, FE models were created and incorporated with the verified vehicle models to simulate dynamic behaviors. LS-DYNA software analyzed the FE models. As a result of the simulations, the newly developed fixed bollard design can safely stop vehicles that weigh 18,000 kg max., except for the 30,000 kg N3 class vehicle, up to 50 km/h. The results revealed that proposed bollard designs successfully met the standard requirements for the vehicle types and speed that represent general urban traffic characteristics. Thus, the new fixed bollard design will contribute to roadside safety in metropolitan areas by protecting critical hazardous roadside facilities. In the next stage, the newly designed barrier system should be optimized to lighten the system and reduce the costs.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulating Blasting Parameters for Sharp Inclined Thin Vein Mines;Geotechnical and Geological Engineering;2024-09-07

2. Status, Challenges, and Trends of International Research on Roadside Safety;Transportation Research Record: Journal of the Transportation Research Board;2024-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3