Sound & vibration control for a single-cylinder gasoline engine based on parameter optimization of timing-chain system

Author:

Hou Xianjun12,Du Songze12,Lu Chihua123,Liu Zien12,Zheng Hao12,Wu Haitao4

Affiliation:

1. Hubei Key Laboratory of Advanced Technology for Automotive Components, China

2. Hubei Collaborative Innovation Center for Automotive Components Technology, China

3. School of Automotive Engineering, Wuhan University of Technology, P.R. China

4. Elite Power Technology Co., Ltd, China

Abstract

In order to promote the idling noise quality of a single-cylinder gasoline engine, this paper addresses sound source identification and noise control research. The noise was identified by the application of subjective evaluation, acoustic spectrum and sound intensity analysis. It was found that the noise was caused by the anomalous dynamic performance of the timing system under idling conditions. Furthermore, sound and vibration characteristics of timing system were improved by design methodology research of key components. A multi-body dynamic model was established to characterize dynamic characteristics of the timing system under idling conditions. The key factor of producing noise was that the fluctuation of contact force between the chain and guide and transverse displacement of the chain were much higher than those of the allowable design limit. For the lowest design alternation and manufacturing costs, the work analyzed six timing system improvement schemes obtained by cross combination of tensioner blade line and guide strip radian parameters. After that, the optimal design scheme which could improve dynamic performance parameters of the timing system was derived. The design scheme was conducted with a acoustic test of engine to derive the following results. The noise level of a single-cylinder engine under idling conditions decreased by 3 dB(A). The abnormal noise of the original engine was eliminated under subjective evaluation. The sound quality under other working conditions had no apparent deterioration. Research shows that guide and tensioner blade line optimization design could improve dynamic performance of the timing chain system to eliminate abnormal noise, thereby significantly improving the acoustic characteristic of a single-cylinder engine.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference15 articles.

1. Pang J, Cen G, He H. Automotive noise and vibration – principe and application. Beijing, China: Beijing Institute of Technology Press, 2014, pp.150–153.

2. EXPERIMENTAL STUDY ON HIGH-SPEED CHARACTERISTICS FOR AUTOMOTIVE ENGINE CHAIN

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New design for unconventional timing silent chain system of inline engine;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3