Development of a new method to assess fuel saving using gear shift indicators

Author:

Vagg Christopher1,Brace Christian J1,Wijetunge Roshan1,Akehurst Sam1,Ash Lloyd2

Affiliation:

1. University of Bath, Bath, UK

2. Ashwoods Automotive Ltd, Exeter, UK

Abstract

European regulations set the emissions requirements for new vehicles at 130 g CO2/km, with an additional 10 g CO2/km to be achieved by additional complementary measures, including gear shift indicators. However, there is presently little knowledge of how much fuel or CO2 could actually be saved by the introduction of gear shift indicators, and there is no consensus on how these savings should be quantified. This study presents a procedure which allows these savings to be quantified over a New European Driving Cycle, and explores the trade-off between fuel savings and drivability. A vehicle model was established and calibrated using data obtained from pedal ramp tests conducted at steady speed using a chassis dynamometer, significantly reducing the time required to generate a calibration data set when compared with a steady-state mapping approach. This model was used for the optimisation of gear shift points on the New European Driving Cycle for reduced fuel consumption subject to drivability constraints. During model validation the greatest fuel saving achieved experimentally for a warm engine was 3.6% over the New European Driving Cycle, within the constraints imposed using subjective driver appraisal of vehicle drivability. The same shift strategy for a cold start driving cycle showed a fuel saving of 4.3% over the baseline, with corresponding savings in CO2 of 4.5% or 6.4 g CO2/km. For both hot and cold tests the savings were made entirely in the urban phase of the New European Driving Cycle; there were no significant differences in fuel consumption in the extra-urban phase. These results suggest that the introduction of gear shift indicators could have a substantial impact, contributing significantly towards the 10 g CO2/km to be achieved by additional complementary measures when assessed in this way. It is not clear whether these savings would translate into real world driving conditions, but for legislative purposes an assessment procedure based on the New European Driving Cycle remains a logical choice for simplicity and continuity.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental evaluation of gear-shift and internal-combustion engine variables on fuel consumption, noise and pollutant emissions;Transportation Research Procedia;2022

2. Design improvement of an airbox for a passenger vehicle;Journal of Physics: Conference Series;2021-12-01

3. Study of a synchronizer mechanism through multibody dynamic analysis;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2018-05-14

4. Green Driver: Travel Behaviors Revisited on Fuel Saving and Less Emission;Sustainability;2018-01-26

5. Three-parameter transmission gear-shifting schedule for improved fuel economy;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2017-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3