An algorithm for solving the equilibrium points of high-dimensional nonlinear vehicle dynamic system based on a combination of genetic algorithm, sequential quadratic programming method, and continuation method

Author:

Wang Xianbin1ORCID,Langari Reza2,Pei Yulong1,Li Zhipeng1,Li Weifeng1

Affiliation:

1. School of Civil Engineering and Transportation, Northeast Forestry University, Harbin, China

2. Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA

Abstract

The paper proposes an algorithm that combines Genetic Algorithm, Sequential Quadratic Programming, and Continuation Method to solve the equilibrium points of a multi-degree-of-freedom vehicle nonlinear system. The algorithm’s effectiveness is demonstrated by applying it to search for equilibrium points of a 5-degree-of-freedom (5DOF) nonlinear vehicle model, which considers both longitudinal and lateral motion. The dynamic equilibrium points of front-wheel-drive, rear-wheel-drive, and all-wheel-drive vehicles with different front-wheel steering angle inputs are calculated. Taking the front-wheel-drive system as an example, the system equilibrium points are further analyzed using phase space analysis and eigenvalue analysis for verification. In addition, the impact of the driving effect on the equilibrium points bifurcation is investigated. The results show that compared with the Genetic Algorithm alone and the combination method of Genetic Algorithm and Sequential Quadratic Programming, the proposed algorithm can effectively and accurately solve the equilibrium points of the 5DOF vehicle model. The study also reveals that the driving effect significantly influences the vehicle equilibrium point bifurcation.

Funder

Key R&D Plan of Heilongjiang Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3