Numerical and experimental investigation on the air flow characteristics of heating, ventilation, and air-conditioning module for a small electric vehicle

Author:

Li Kang12,Gao Hao1,Jia Peng1,Su Lin12,Fang Yidong12ORCID,Zhang Hua1,Liu Ni1

Affiliation:

1. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China

2. Key Laboratory of Multiphase Flow and Heat Transfer in Shanghai Power Engineering, University of Shanghai for Science and Technology, Shanghai, China

Abstract

In electrical vehicles, replacing positive temperature coefficient heater as heat source with an air source heat pump could improve the driving range and decrease energy consumption in cold climate. Design of the heating, ventilation, and air-conditioning module for heat pump system has a significant influence on its performance in each working mode. A newly designed heat pump heating, ventilation, and air-conditioning module was introduced in this paper. The air flow characteristics of the heat pump heating, ventilation, and air-conditioning module in four working modes were analyzed, and the air flow rate and wind resistance were obtained by numerical simulation. Experiments were also conducted for validating its airflow rate in each working mode. Results of these experiments show that some unfavorable phenomena such as flow maldistribution and vortex inside the heat pump heating, ventilation, and air-conditioning module exist, which could lead to insufficient utilization of the heat exchange area of heat exchangers and the generation of aerodynamic noise. Furthermore, the air flow rate of the original heating, ventilation, and air-conditioning module was also measured for comparison, and the designed heat pump heating, ventilation, and air-conditioning module shows nearly 15–20% decrease in each working mode.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3