A new multi-objective optimization method for full-vehicle suspension systems

Author:

Tey Jing Yuen1,Ramli Rahizar2,Abdullah Ahmad Saifizul2

Affiliation:

1. Centre for Vehicular Technology, Department of Mechanical and Material Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Malaysia

2. Advanced Computational and Applied Mechanics Research Group, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Malaysia

Abstract

The conventional approach in vehicle suspension optimization based on the ride comfort and the handling performance requires decomposition of the multi-performance targets, followed by lengthy iteration processes. Suspension tuning is a time-consuming process, which often requires the benchmarking of competitors’ vehicles to define the performance targets of the desired vehicle by experimental techniques. Optimum targets are difficult to derive from benchmark vehicles as each vehicle has its own unique vehicle set-up. A new method is proposed to simplify this process and to reduce significantly the development process. These design objectives are formulated into a multi-objective optimization problem together with the suspension packaging dimensions as the design constraints. This is in order to produce a Pareto front of an optimized vehicle at the early stages of design. These objectives are minimized using a multi-objective optimization workflow, which involves a sampling technique, and a regularity-model-based multi-objective estimation of the distribution algorithm to solve greater than 100-dimensional spaces of the design parameters by the software-in-the-loop optimization process. The methodology showed promising results in optimizing a full-vehicle suspension design based on the ride comfort and the handling performance, in comparison with the conventional approach.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3