Long-short-time domain torque optimal prediction and allocation method for electric logistics vehicles with electro-hydraulic composite steering system

Author:

Liang Weihe1ORCID,Zhao Wanzhong1ORCID,Wang Chunyan1,Luan Zhongkai1

Affiliation:

1. Nanjing University of Aeronautics and Astronautics, Nanjing, China

Abstract

The electro-hydraulic composite steering system can reduce steering energy consumption through cooperative control of electro-hydraulic mechanisms, an inevitable trend for global commercial vehicles and green logistics. However, in cooperative control, the electro-hydraulic coupling characteristics not only lead to an increase in system energy consumption but also cause fluctuations in system speed during electro-hydraulic switching. In response to the above issues, this paper proposes a long-short-time domain steering mode selection and torque optimal allocation strategy that integrates long-time domain steering mode selection and short-time domain torque allocation. In the long-term domain, with steering energy consumption as the optimization indicator, the optimal steering mode is selected through a steering mode selection model based on the CNN-LSTM network to reduce steering energy consumption. In the short time domain, the Holt Winter exponential smoothing and support vector regression methods are combined for torque prediction, and the steering energy consumption and electro-hydraulic switching smoothness indicators are comprehensively considered. The electro-hydraulic torque distribution ratio is dynamically optimized in the rolling time domain to reduce the fluctuation of hydraulic pump speed during electro-hydraulic switching. The simulation and experimental results show that the proposed method can improve the switching smoothness of the electro-hydraulic composite steering system and reduce the system’s overall energy consumption by 54.1%.

Funder

the Fundamental Research Funds for the Central Universities

Jiangsu Funding Program for Excellent Postdoctoral Talent, China

National Natural Science Foundation of China

Jiangsu Outstanding Youth Fund Project

China National Postdoctoral Program for Innovative Talents

Jiangsu Key R & D Plan

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3