The multi-objective optimization of the damaged aircraft trailer based on a dynamic model

Author:

Hong Zhenyu1,Yu Xiaoli1,He Zhenpeng1,Zhang Guichang1

Affiliation:

1. Civil Aviation University of China, Tianjin, China

Abstract

A damaged aircraft trailer is an essential piece of airport emergency rescue equipment which is made up of frames and multiple suspensions. As a load–force transferring mechanism, the suspension bears heavy loads which can cause fatigue damage. Therefore, reducing the maximum stress of the suspension is necessary to improve the vehicle performance. Besides, lightweight design should be considered to reduce energy consumption. Thus, lighter suspension which can bear more pressure is the optimization objective of this research. A multi-objective optimization method was carried out to analyze the suspension arm of a damaged aircraft trailer. Firstly, to investigate the dynamic characteristics and the reliability of the damaged aircraft trailer, a detailed three combined damaged aircraft trailers model was built. Based on the flexible-rigid coupled method, dynamic simulation of the damaged aircraft trailer was conducted in MSC.ADAMS. Then a suspension model was established, and the stress under different loads was measured to verify the accuracy of the finite element suspension arm model by experiments. Based on the design of experiment method, the effect of suspension arm parameters were obtained to build the approximate models. Besides, the influences of some effect parameters on optimal objectives were analyzed based on the surface response method. During the optimization process, a non-dominated sorting genetic algorithm II was adopted to optimize the mass and stress of the suspension arm. The results show that the mass of the suspension arm is reduced from 146.81 kg to 126.69 kg, which is a reduction of 14%. The maximum von Mises stress is changed from 325 MPa to 297 MPa, which is a decrease of 8.6%. This optimal method can be extended to the overall vehicle, which has an important significance in the whole damaged aircraft trailer characteristics improvement design.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3