Thermal impact on the control and the efficiency of the 2010 Toyota Prius hybrid electric vehicle

Author:

Kim Namwook1,Rousseau Aymeric2

Affiliation:

1. Department of Mechanical Engineering, Hanyang University, Ansan, Gyeonggi-do, South Korea

2. Argonne National Laboratory, Lemont, Illinois, USA

Abstract

Since introduction of the Prius to the Japanese automotive market in 1997, Toyota has sold more than 1 million of these hybrid electric vehicles in the USA and 3 million in the worldwide market up to 2013. The market penetration of the vehicle has been successful because it provides outstanding fuel economy. However, the reduction in the vehicle’s efficiency under severe weather conditions, especially when the weather is very cold, has not been carefully investigated. The engine’s fuel efficiency decreases when the engine is cooled during use in the electric drive mode, or the battery’s efficiency is also degraded under cold weather conditions. Whereas the impacts of the thermal conditions on the fuel economies of vehicles are being increasingly emphasized, an analysis of these impacts has not been conducted widely because this type of analysis needs to be based on test results obtained from a well-designed environmental chamber that can simulate different thermal conditions. The Advanced Powertrain Research Facility at Argonne National Laboratory has equipped its environmental thermal chamber appropriately and has tested the 2010 Toyota Prius at different ambient room temperatures (−7 ºC, 22 ºC, and 35 ºC). On the basis of the test results, the findings include the fact that the control behavior changes significantly according to the thermal conditions. For instance, the controller forces the engine to be turned on if the engine coolant temperature is below 53 ºC. In addition to the thermal impacts on the controller, performance degradation of the powertrain components and the fuel efficiency levels of the vehicle are also analyzed using the test results. Although this study does not advance a novel idea, the information provided herein should be very useful to researchers seeking to understand controller behavior in the real world under different thermal conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3