An anchor-free detector and R-CNN integrated neural network architecture for environmental perception of urban roads

Author:

Lin Chaojun1ORCID,Shi Ying1,Zhang Jian1ORCID,Xie Changjun1,Chen Wei1,Chen Yue1

Affiliation:

1. Wuhan University of Technology, Wuhan, China

Abstract

Environmental perception of urban roads is a critical research goal in intelligent transportation technology and autonomous vehicles, and pedestrian location is key to many relevant algorithms. Because anchor-free detectors are faster and region-based convolutional neural networks have a higher accuracy in object detection and classification, we propose an integrated convolutional networking architecture combining an anchor-free detector with a region-based convolutional neural network in the environmental perception task. The proposed network achieves higher precision and increases inference speed by up to 30%. To acquire more accurate region boundaries than a coarse bounding box method, a semantic segmentation sub-network is adopted to predict an instance segmentation mask for each object, and more accurate segmentation results are obtained by using the Dice loss. Moreover, we present an assignment strategy using a modified feature pyramid structure and show that it improves mean average precision of pedestrian detection by 2% on average. Finally, we verify that the pretrained neural network is beneficial for small datasets. Overall, the results show that our model achieves higher precision than the approaches used for comparison.

Funder

National Natural Science Foundation of China

Foundation for Innovative Research Groups of Hubei Province of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving the Perception of Moronic Systems Whether Human or Self-Driving Vehicles Using Intelligent Agents: A Review;Signals and Communication Technology;2024

2. Fast object detector with center localization confidence based on FCOS for environment perception in urban traffic scene;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-02-04

3. Accurate and efficient traffic participant detection based on optimized features and multi-scale localization confidence;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-08-24

4. Multiple Musical Instrument Signal Recognition Based on Convolutional Neural Network;Scientific Programming;2022-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3