Affiliation:
1. Wuhan University of Technology, Wuhan, China
Abstract
Environmental perception of urban roads is a critical research goal in intelligent transportation technology and autonomous vehicles, and pedestrian location is key to many relevant algorithms. Because anchor-free detectors are faster and region-based convolutional neural networks have a higher accuracy in object detection and classification, we propose an integrated convolutional networking architecture combining an anchor-free detector with a region-based convolutional neural network in the environmental perception task. The proposed network achieves higher precision and increases inference speed by up to 30%. To acquire more accurate region boundaries than a coarse bounding box method, a semantic segmentation sub-network is adopted to predict an instance segmentation mask for each object, and more accurate segmentation results are obtained by using the Dice loss. Moreover, we present an assignment strategy using a modified feature pyramid structure and show that it improves mean average precision of pedestrian detection by 2% on average. Finally, we verify that the pretrained neural network is beneficial for small datasets. Overall, the results show that our model achieves higher precision than the approaches used for comparison.
Funder
National Natural Science Foundation of China
Foundation for Innovative Research Groups of Hubei Province of China
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献