Tribological enhancement of piston skirt conjunction using graphene-based coatings

Author:

Hildyard Robin1,Bewsher Stephen Richard2ORCID,Walker Jack1,Umer Jamal1,Saremi-Yarahmadi Sina3,Pacella Manuela1,Mohammadpour Mahdi1ORCID,Offner Guenter2

Affiliation:

1. Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK

2. AVL List GmbH, Graz, Austria

3. Department of Materials, Loughborough University, Loughborough, UK

Abstract

Piston skirt to cylinder liner conjunctions are amongst the major contributors to frictional power losses of Internal Combustion Engines (ICEs). Efforts have been made to mitigate the frictional losses of these conjunctions by incorporating different technologies such as texturing and application of novel coatings. Any potential technology needs to provide adequate wear resistance as well as frictional reduction in order to be practically applicable. In this paper, the piston skirt of a gasoline engine is deposited by three different variants of Graphene Oxide (GO) coatings deposited using an Electro-Phoretic Deposition (EPD) method. Their tribological performance is benchmarked against uncoated steel and graphite coated aluminium skirts. These coatings are experimentally characterised in terms of asperity level friction, topography and wear resistance. The conjunction and system level performance of these coatings considering both boundary and viscous friction and system dynamics are then evaluated using a multi-physics tribo-dynamic model. Results show that by incorporating an appropriate GO coating, the frictional power loss of the piston skirt to cylinder liner conjunction can be improved by up to 14% whilst maintaining the wear resistance of the coating at the level of an uncoated steel surface.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of AVL-based time-domain analysis on torsional vibration of engine shafting;Journal of Vibroengineering;2024-08-09

2. Hybrid surface modification for improved tribological performance of IC engine components – a review;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2023-01-17

3. Experimental investigation on anti-wear coating design for a small aviation kerosene piston engine;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2022-02-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3