Measurement of friction and noise from piston assembly of a single-cylinder motorbike engine at realistic speeds

Author:

Zavos Anastasios1,Nikolakopoulos Pantelis G1

Affiliation:

1. Machine Design Laboratory, Department of Mechanical Engineering and Aeronautics, University of Patras, Greece

Abstract

This paper presents a thorough experimental study of piston assembly friction and noise in a single-cylinder motorbike engine operating at low speeds. The friction of the piston ring pack is evaluated using a foil strain gauge with minimal cylinder modification on the thrust side. The technique involves transmitting deformations through the cylinder bore and recording reflections from the lubricated interface as the piston assembly passes. Under these conditions, the piston side forces and the thermal deformations on the output side of the strain gauge sensor are critical. Therefore, the proposed methodology is designed under controlled operating conditions. The overall deformation of the piston assembly is analysed to measure the primary reflection due to friction between the piston assembly and the cylinder wall. Simultaneously, the piston assembly noise is recorded on the thrust side of the engine block using a microphone. Taking measured noise data into account, possible piston slap events resulting from varied engine speeds are taken into account using continuous wavelet signal analysis. The calibration procedure for both tests is also illustrated. The measured friction results show that the strain gauge technique is a challenging work in providing realistic results to enhance current technology. For low engine speeds, a higher contribution is noted by boundary friction at the top dead centre reversal, extending to the position of maximum combustion pressure in the power stroke. Furthermore, the main contribution of the piston slap is estimated at the thrust side when the piston assembly passes at the beginning of the combustion stroke. These results can also be attributed as data to validate piston ring models in terms of friction and piston slap.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3