A new methodology to determine the design sensitivity of critical automotive body joints for basic design cycle

Author:

Tunç Birkan1,Şendur Polat1ORCID

Affiliation:

1. Özyeğin University, Istanbul, Turkey

Abstract

As a result of more stringent requirements for improved fuel economy and emissions, there has been an increasing research activity to make vehicles lighter weight under some predetermined structural performance targets such as the stiffness of the vehicle body. The vehicle body structure is one of the most significant contributors to the weight of an automotive. Therefore, understanding the automotive joint properties on vehicle body performance is of significant importance as they are closely linked to structural integrity and weight of the vehicle body. In this paper, we develop a new methodology to quantify the sensitivity of critical joints of an automotive on the key performance indices. Torsional stiffness is chosen as static key performance index, while vehicle body modes are selected as dynamic key performance indices. Lower and upper sections of the A-pillar, B-pillar, C-pillar, and D-pillar of an automotive body are replaced by bushing elements having appropriate stiffness properties in the simplified model. Stiffness of bushing elements is tuned by minimizing the error between the original and simplified models on the aforementioned key performance indices. Once a satisfactory correlation is achieved between the simple model and the original model, bushing stiffness for each section is varied to determine the sensitivity of each joint. The proposed approach is demonstrated on a finite element model of 2010 Toyota Yaris. Finally, a design study is presented to improve the body key performance indices using the sensitivity results. The simulation results show that the methodology has a potential for the basic design cycle, where the targets for section properties need to be defined and at later design cycles, where the joints can be realized in design using the sensitivity of joints resulting in more efficient body structure considering the trade-offs between structural integrity and weight.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cross-section optimization of vehicle body through multi-objective intelligence adaptive optimization algorithm;Structural and Multidisciplinary Optimization;2023-02

2. The effect of spotwelds and structural adhesives on static and dynamic characteristics of vehicle body design;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2021-03-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3