Affiliation:
1. Northeastern University, Shenyang, China
2. Neusoft Reach, Shenyang, China
Abstract
A novel method for the eight most common driver’s distraction actions recognition is presented in this paper. To this end, a semi-cascade network (SCN) with very lightweight architecture is designed. The approach recognizes the morphology of the human face and hands to make judgments about the driver’s actions rather than just judging facial information. In order to subdivide similar actions, a SCN structure which effectively reduces the network’s scale is employed. A joint training approach is proposed for training the network and achieving 95.61% accuracy. In addition, to verify the validity of the method, a dataset containing 100,000 samples is created. Finally, a warning strategy is provided for our system and 93.9% warning rate for the driver’s distraction behavior is achieved.
Funder
Industrial Robust Foundation Projects of Shanghai
Fundamental Research Funds for the Central Universities of China
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献